ACIDS and BASES LESSON 7 #### ACID - BASE PROPERTIES OF IONIC SALTS (HYDROLYSIS): - ★ We are often left with salts at the end of an acid base neutralisation. One would expect the solution to be <u>neutral</u>, but this is not always the case. - \star Some ions react with H+ or OH- from the *autoionisation* of H₂O creating an imbalance in their amounts and hence making the solution acidic or basic. #### Neutralisation e.g. $$CH_3COOH_{(aq)} + NaOH_{(aq)} \rightarrow NaCH_3COO_{(aq)} + H_2O_{(l)}$$ acid + base \rightarrow aqueous salt + water $$NaCH_3COO_{(aq)} \longrightarrow Na_{(aq)} + CH_3COO_{(aq)} \longrightarrow Value Va$$ * CH_3COO - ion will react with H^+ ion and cause an imbalance in the water ionisation. It is said therefore to have an "*affinity*" for H^+ ion. - * The amount of H^+ ion in solution is reduced and thus there is now more OH^- ions than H^+ and so the solution is *basic*. - ★ To determine whether or not an aqueous ion has an *affinity* for H⁺ or OH⁻ we need to consider where they come from in terms of the strong or weak acids and bases that we know. # **ANIONS OF MONOPROTIC STRONG ACIDS:** $$HCl \rightarrow H^+ + Cl^-$$ Here there is *no affinity* as the reaction proceeds all the way to the right. (The $H^+ + Cl^-$ do not get back together again!) - \therefore Cl- will not interfere with the H₂O ionisation. - NB: Anions of monoprotic strong acids are neither acids nor bases! **CHEMISTRY** # Luco3 Page 2 ## **CATIONS OF STRONG BASE** $NaOH \rightarrow Na^+ + OH^-$ Here there is no affinity .. Na+ will not interfere with NB: Anions of monoprotic str **Question:** Will an aqueous solu answer. plain your # **ANIONS OF MONOPROTIC WEAK ACIDS:** *High affinity* as acetic acid is a weak electrolyte. The left hand side of the equation is heavily favoured hence the H+ and the CH₃COO- must get back together! :. CH₃COO- will interfere with the H₂O ionisation. CH₃COO- $$+$$ $+$ $+$ OH- or CH₃COO- $+$ H₂O \longrightarrow CH₃COOH $+$ OH- Hydrolysis ★ H+ decreases and OH- is in excess, so the CH₃COO- ion is **BASIC** in solution. NB: Anions of *monoprotic weak acids* are basic! The weaker the acid the more basic, as it has greater affinity. #### **CATIONS OF WEAK BASES:** $$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$ *High affinity* as the reaction favors the left as NH₃ is a **weak electrolyte**. \therefore NH₄⁺ will interfere with the H₂O ionisation. ⋆ OH· decreases and H+ is in excess, so the NH₄+ ion is acidic in solution. NB: Anions of weak bases are ACIDIC! The weaker the base the more acidic. ## ANIONS \rightarrow 1ST IONISATION OF DIPROTIC ACIDS: $$H_2SO_4 \rightarrow H^+ + HSO_4^-$$ Here there is *no affinity* as the reaction unidirectional. - :. HSO₄- will not interfere with the H₂O ionisation: - \therefore HSO₄ = **NEUTRAL** (seemingly) NB: $$HSO_4^- \rightarrow H^+ + SO_4^{2-}$$:. Slightly ACIDIC! ## ANIONS → 2ND IONISATION OF DIPROTIC ACIDS : $$HSO_4^- \longrightarrow H^+ + SO_4^{2-}$$ *High affinity* as the reaction favors the left. \therefore SO₄²⁻ will interfere with the H₂O ionisation, and is slightly **BASIC**! **CHEMISTRY** Page 39 Lucelli ## **Exercise:** By examining the nature of the ions decide whether the following ionic salts would be acidic, basic or neutral in aqueous solution. Explain your answers with the aid of a diagram and a *HYDROLYSIS* reaction. Jour 10 + 50 /2 = 11504 1. NaHSO₄ 2. **KCl** rentool 3. NaCH₃COO 4. NH₄Cl 5. Na₂SO₄ NHICH COO (hard) = NH, CH, COOK Zunterion. 7. Feclo Fe TI + 1/20 = Fe (01)3 + 34+ Reights cost the = kcost on bas 8, Kicoz 1. Explain why the salt of a strong acid and a strong base yields a neutral solution. Both strong acids and strong bases produce ions in a complete, 2. Explain why the salt of a strong acid and a weak base yields an acidic solution. | 1 | Colour of universal indicator | рН | Acidic/
basic/
neutral | Equation to explain if solution is acidic or basic | |------------------------------|-------------------------------|-------------------|------------------------------|--| | Sodium chloride(aq) | tireen | 7 | Nintral | | | Potassium chloride(aq) | Careen | 7 | Neutral | | | Ammonium chloride(aq) | Yellow | 6 | Acrelia | NH41091 + H20811 22 NH31091 + H308091 | | Calcium chloride(aq) | arten | 7 | Neutral | | | Iron (III) chloride(aq) | Red | water | Acidic | Feings + H20(1) == Fe (01/7)(1) + 3 Hings | | Sodium carbonate(aq) | <i>furple</i> | 1.1 | Burre | (07 cng) + 2 H2 Off 2 H2 Cox (ng) + 2 OH ing) | | Sodium ethanoate(aq) | pale green | 8 | Burne | CH3600 (mgs + H20(15 77 CH3600H (mg) + 04) | | Sodium hydrogencarbonate(aq) | Dark green | Op. | Baric | Heozeng + Heore Et Helorings + Orlangs | | Sodium sulfate (aq) | lirean | - Special Control | Neutral | | | Sodium hydrogen sulfate (aq) | . Red | 4040 | Acrefic | HICHERT HZOIIS = FUHERY + HZOENGS | | Sodium sulfite(aq) | bark green | - 9 | Evere | 50 \$ 20 gr + H20 (11 23 H50) 1641 + OH 1641 | | Sodium sulfide(aq) | Purple. | satter
s | faric | 52 = ag + 2H20 (18 =2 H25 (ag + 20H = 19) | | Iron(II) sulfate(aq) | Rect | 496 | Acide | Fe "+ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | Sodium oxalate(aq) | Pale green | 8 | Passe | 6204 109 + 3H20111 = H26204109 + 20 H1091 | | Ammonium sulfate(aq) | Yellow. | 6 | Acidic | MH41091 + 120 111 = NHILAGE + 4,0 cags | | Aluminium sulfate(aq) | 2 e cl | 1 | Acidie | A13+ + 3H20 fir = A1(0H) 7651 + 844 (ag) | | Aluminium chloride(aq) | re e el | -ditte- | Acidic | A13+ + 3400 (11 23 A1(0H) 5151 + 3H+ ings |