ACIDS and BASES

LESSON 7

ACID - BASE PROPERTIES OF IONIC SALTS (HYDROLYSIS):

- ★ We are often left with salts at the end of an acid base neutralisation. One would expect the solution to be <u>neutral</u>, but this is not always the case.
- \star Some ions react with H+ or OH- from the *autoionisation* of H₂O creating an imbalance in their amounts and hence making the solution acidic or basic.

Neutralisation

e.g.
$$CH_3COOH_{(aq)} + NaOH_{(aq)} \rightarrow NaCH_3COO_{(aq)} + H_2O_{(l)}$$
 acid + base \rightarrow aqueous salt + water
$$NaCH_3COO_{(aq)} \longrightarrow Na_{(aq)} + CH_3COO_{(aq)} \longrightarrow Value \longrightarrow Va$$

* CH_3COO - ion will react with H^+ ion and cause an imbalance in the water ionisation. It is said therefore to have an "*affinity*" for H^+ ion.

- * The amount of H^+ ion in solution is reduced and thus there is now more OH^- ions than H^+ and so the solution is *basic*.
- ★ To determine whether or not an aqueous ion has an *affinity* for H⁺ or OH⁻ we need to consider where they come from in terms of the strong or weak acids and bases that we know.

ANIONS OF MONOPROTIC STRONG ACIDS:

$$HCl \rightarrow H^+ + Cl^-$$

Here there is *no affinity* as the reaction proceeds all the way to the right. (The $H^+ + Cl^-$ do not get back together again!)

- \therefore Cl- will not interfere with the H₂O ionisation.
- NB: Anions of monoprotic strong acids are neither acids nor bases!

CHEMISTRY

Luco3 Page 2

CATIONS OF STRONG BASE

 $NaOH \rightarrow Na^+ + OH^-$

Here there is no affinity

.. Na+ will not interfere with

NB: Anions of monoprotic str

Question: Will an aqueous solu answer.

plain your

ANIONS OF MONOPROTIC WEAK ACIDS:

High affinity as acetic acid is a weak electrolyte. The left hand side of the equation is heavily favoured hence the H+ and the CH₃COO- must get back together!

:. CH₃COO- will interfere with the H₂O ionisation.

CH₃COO-

$$+$$
 $+$
 $+$
OH- or CH₃COO- $+$ H₂O \longrightarrow CH₃COOH $+$ OH- Hydrolysis

★ H+ decreases and OH- is in excess, so the CH₃COO- ion is **BASIC** in solution.

NB: Anions of *monoprotic weak acids* are basic! The weaker the acid the more basic, as it has greater affinity.

CATIONS OF WEAK BASES:

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^-$$

High affinity as the reaction favors the left as NH₃ is a **weak electrolyte**.

 \therefore NH₄⁺ will interfere with the H₂O ionisation.

⋆ OH· decreases and H+ is in excess, so the NH₄+ ion is acidic in solution.

NB: Anions of weak bases are ACIDIC! The weaker the base the more acidic.

ANIONS \rightarrow 1ST IONISATION OF DIPROTIC ACIDS:

$$H_2SO_4 \rightarrow H^+ + HSO_4^-$$

Here there is *no affinity* as the reaction unidirectional.

- :. HSO₄- will not interfere with the H₂O ionisation:
- \therefore HSO₄ = **NEUTRAL** (seemingly)

NB:
$$HSO_4^- \rightarrow H^+ + SO_4^{2-}$$
 :.

Slightly ACIDIC!

ANIONS → 2ND IONISATION OF DIPROTIC ACIDS :

$$HSO_4^- \longrightarrow H^+ + SO_4^{2-}$$

High affinity as the reaction favors the left.

 \therefore SO₄²⁻ will interfere with the H₂O ionisation, and is slightly **BASIC**!

CHEMISTRY

Page 39 Lucelli

Exercise:

By examining the nature of the ions decide whether the following ionic salts would be acidic, basic or neutral in aqueous solution. Explain your answers with the aid of a diagram and a *HYDROLYSIS* reaction. Jour 10 + 50 /2 = 11504

1. NaHSO₄

2. **KCl**

rentool

3. NaCH₃COO

4. NH₄Cl

5. Na₂SO₄

NHICH COO (hard)

= NH, CH, COOK Zunterion.

7. Feclo

Fe TI + 1/20 = Fe (01)3 + 34+

Reights

cost the = kcost on bas 8, Kicoz

1. Explain why the salt of a strong acid and a strong base yields a neutral solution.

Both strong acids and strong bases produce ions in a complete,

2. Explain why the salt of a strong acid and a weak base yields an acidic solution.

1	Colour of universal indicator	рН	Acidic/ basic/ neutral	Equation to explain if solution is acidic or basic
Sodium chloride(aq)	tireen	7	Nintral	
Potassium chloride(aq)	Careen	7	Neutral	
Ammonium chloride(aq)	Yellow	6	Acrelia	NH41091 + H20811 22 NH31091 + H308091
Calcium chloride(aq)	arten	7	Neutral	
Iron (III) chloride(aq)	Red	water	Acidic	Feings + H20(1) == Fe (01/7)(1) + 3 Hings
Sodium carbonate(aq)	<i>furple</i>	1.1	Burre	(07 cng) + 2 H2 Off 2 H2 Cox (ng) + 2 OH ing)
Sodium ethanoate(aq)	pale green	8	Burne	CH3600 (mgs + H20(15 77 CH3600H (mg) + 04)
Sodium hydrogencarbonate(aq)	Dark green	Op.	Baric	Heozeng + Heore Et Helorings + Orlangs
Sodium sulfate (aq)	lirean	- Special Control	Neutral	
Sodium hydrogen sulfate (aq)	. Red	4040	Acrefic	HICHERT HZOIIS = FUHERY + HZOENGS
Sodium sulfite(aq)	bark green	- 9	Evere	50 \$ 20 gr + H20 (11 23 H50) 1641 + OH 1641
Sodium sulfide(aq)	Purple.	satter s	faric	52 = ag + 2H20 (18 =2 H25 (ag + 20H = 19)
Iron(II) sulfate(aq)	Rect	496	Acide	Fe "+ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Sodium oxalate(aq)	Pale green	8	Passe	6204 109 + 3H20111 = H26204109 + 20 H1091
Ammonium sulfate(aq)	Yellow.	6	Acidic	MH41091 + 120 111 = NHILAGE + 4,0 cags
Aluminium sulfate(aq)	2 e cl	1	Acidie	A13+ + 3H20 fir = A1(0H) 7651 + 844 (ag)
Aluminium chloride(aq)	re e el	-ditte-	Acidic	A13+ + 3400 (11 23 A1(0H) 5151 + 3H+ ings